R/estimators.R
spikedOperatorShrinkEst.Rd
spikedOperatorShrinkEst()
implements the asymptotically
optimal shrinkage estimator with respect to the operator loss in a spiked
covariance matrix model. Informally, this model admits Gaussian
data-generating processes whose covariance matrix is a scalar multiple of
the identity, save for a few number of large "spikes". A thorough review of
this estimator, or more generally spiked covariance matrix estimation, is
provided in Donoho et al. (2018)
.
spikedOperatorShrinkEst(dat, p_n_ratio, num_spikes = NULL, noise = NULL)
A numeric data.frame
, matrix
, or similar object.
A numeric
between 0 and 1 representing the asymptotic
ratio of the number of features, p, and the number of observations, n.
A numeric
integer equal to or larger than one which
providing the known number of spikes in the population covariance matrix.
Defaults to NULL
, indicating that this value is not known and must
be estimated.
A numeric
representing the known scalar multiple of the
identity matrix giving the approximate population covariance matrix.
Defaults to NULL
, indicating that this values is not known and must
be estimated.
A matrix
corresponding to the covariance matrix estimate.
Donoho D, Gavish M, Johnstone I (2018). “Optimal shrinkage of eigenvalues in the spiked covariance model.” The Annals of Statistics, 46(4), 1742 -- 1778.
spikedOperatorShrinkEst(dat = mtcars, p_n_ratio = 0.1, num_spikes = 2L)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 27.663217 -8.5966703 -633.37314 -320.953638 1.8380109 -4.3684737
#> [2,] -8.596670 3.1720692 199.67712 101.953669 -0.5776385 1.3759270
#> [3,] -633.373137 199.6771237 15360.74540 6721.151894 -47.0761604 107.7051931
#> [4,] -320.953638 101.9536687 6721.15189 4700.814136 -16.4565755 44.2089877
#> [5,] 1.838011 -0.5776385 -47.07616 -16.456575 0.6095354 -0.3369676
#> [6,] -4.368474 1.3759270 107.70519 44.208988 -0.3369676 1.2155679
#> [7,] 5.074492 -1.6193754 -96.02650 -86.791351 0.1888862 -0.5990422
#> [8,] 1.968810 -0.6231283 -44.37716 -24.997787 0.1228697 -0.3019112
#> [9,] 1.317146 -0.4118830 -36.58047 -8.326759 0.1301928 -0.2692416
#> [10,] 1.700203 -0.5290602 -50.81805 -6.363260 0.1931188 -0.3826690
#> [11,] -4.468236 1.4298631 79.09369 83.075125 -0.1282958 0.4741832
#> [,7] [,8] [,9] [,10] [,11]
#> [1,] 5.07449224 1.96880984 1.31714647 1.70020332 -4.46823619
#> [2,] -1.61937536 -0.62312829 -0.41188299 -0.52906022 1.42986313
#> [3,] -96.02649548 -44.37716096 -36.58046933 -50.81804965 79.09369318
#> [4,] -86.79135137 -24.99778700 -8.32675870 -6.36326002 83.07512477
#> [5,] 0.18888624 0.12286971 0.13019280 0.19311880 -0.12829576
#> [6,] -0.59904220 -0.30191122 -0.26924161 -0.38266899 0.47418321
#> [7,] 2.19521536 0.41942372 0.03325537 -0.08624220 -1.72783406
#> [8,] 0.41942372 0.60140890 0.08132867 0.09647754 -0.38221551
#> [9,] 0.03325537 0.08132867 0.57614074 0.19030722 0.02318964
#> [10,] -0.08624220 0.09647754 0.19030722 0.76683372 0.17558034
#> [11,] -1.72783406 -0.38221551 0.02318964 0.17558034 2.19787794