R/estimators.R
spikedSteinShrinkEst.Rd
spikedSteinShrinkEst()
implements the asymptotically
optimal shrinkage estimator with respect to the Stein loss in a spiked
covariance matrix model. Informally, this model admits Gaussian
data-generating processes whose covariance matrix is a scalar multiple of
the identity, save for a few number of large "spikes". A thorough review of
this estimator, or more generally spiked covariance matrix estimation, is
provided in Donoho et al. (2018)
.
spikedSteinShrinkEst(dat, p_n_ratio, num_spikes = NULL, noise = NULL)
A numeric data.frame
, matrix
, or similar object.
A numeric
between 0 and 1 representing the asymptotic
ratio of the number of features, p, and the number of observations, n.
A numeric
integer equal to or larger than one which
providing the known number of spikes in the population covariance matrix.
Defaults to NULL
, indicating that this value is not known and must
be estimated.
A numeric
representing the known scalar multiple of the
identity matrix giving the approximate population covariance matrix.
Defaults to NULL
, indicating that this values is not known and must
be estimated.
A matrix
corresponding to the covariance matrix estimate.
Donoho D, Gavish M, Johnstone I (2018). “Optimal shrinkage of eigenvalues in the spiked covariance model.” The Annals of Statistics, 46(4), 1742 -- 1778.
spikedFrobeniusShrinkEst(dat = mtcars, p_n_ratio = 0.1, num_spikes = 2L)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 27.663147 -8.5966480 -633.37176 -320.952507 1.8380080 -4.3684649
#> [2,] -8.596648 3.1720621 199.67670 101.953292 -0.5776376 1.3759243
#> [3,] -633.371758 199.6766974 15360.69990 6721.151917 -47.0759740 107.7048410
#> [4,] -320.952507 101.9532921 6721.15192 4700.768676 -16.4566826 44.2090633
#> [5,] 1.838008 -0.5776376 -47.07597 -16.456683 0.6095344 -0.3369659
#> [6,] -4.368465 1.3759243 107.70484 44.209063 -0.3369659 1.2155651
#> [7,] 5.074470 -1.6193679 -96.02672 -86.790194 0.1888899 -0.5990458
#> [8,] 1.968804 -0.6231265 -44.37709 -24.997643 0.1228698 -0.3019109
#> [9,] 1.317145 -0.4118828 -36.58027 -8.326957 0.1301915 -0.2692398
#> [10,] 1.700204 -0.5290605 -50.81772 -6.363670 0.1931165 -0.3826658
#> [11,] -4.468215 1.4298557 79.09401 83.073872 -0.1283000 0.4741877
#> [,7] [,8] [,9] [,10] [,11]
#> [1,] 5.07447019 1.96880419 1.31714549 1.70020351 -4.46821455
#> [2,] -1.61936786 -0.62312646 -0.41188281 -0.52906052 1.42985570
#> [3,] -96.02671828 -44.37709273 -36.58027398 -50.81771930 79.09400796
#> [4,] -86.79019439 -24.99764286 -8.32695723 -6.36367032 83.07387231
#> [5,] 0.18888988 0.12286977 0.13019154 0.19311648 -0.12830000
#> [6,] -0.59904585 -0.30191093 -0.26923977 -0.38266576 0.47418772
#> [7,] 2.19518483 0.41942038 0.03326137 -0.08623014 -1.72780065
#> [8,] 0.41942038 0.60140834 0.08132900 0.09647834 -0.38221201
#> [9,] 0.03326137 0.08132900 0.57613904 0.19030401 0.02318283
#> [10,] -0.08623014 0.09647834 0.19030401 0.76682762 0.17556675
#> [11,] -1.72780065 -0.38221201 0.02318283 0.17556675 2.19784126