summary()
provides summary statistics regarding
the performance of cvCovEst()
and can be used for diagnostic
plotting.
A named list
of class "cvCovEst"
.
The numeric data.frame
, matrix
, or similar
object originally passed to cvCovEst()
.
A character
vector specifying which summaries to
output. See Details for function descriptions.
Additional arguments passed to summary()
These are not
explicitly used and should be ignored by the user.
A named list
where each element corresponds to the output of
of the requested summaries.
summary()
accepts four different choices for the
summ_fun
argument. The choices are:
"cvRiskByClass"
- Returns the minimum, first quartile,
median, third quartile, and maximum of the cross-validated risk
associated with each class of estimator passed to
cvCovEst()
.
"bestInClass"
- Returns the specific hyperparameters, if
applicable, of the best performing estimator within each class along
with other metrics.
"worstInClass"
- Returns the specific hyperparameters, if
applicable, of the worst performing estimator within each class along
with other metrics.
"hyperRisk"
- For estimators that take hyperparameters as
arguments, this function returns the hyperparameters associated with
the minimum, first quartile, median, third quartile, and maximum of the
cross-validated risk within each class of estimator. Each class has
its own tibble
, which are returned as a
list
.
cv_dat <- cvCovEst(
dat = mtcars,
estimators = c(
linearShrinkEst, thresholdingEst, sampleCovEst
),
estimator_params = list(
linearShrinkEst = list(alpha = seq(0.1, 0.9, 0.1)),
thresholdingEst = list(gamma = seq(0.1, 0.9, 0.1))
),
center = TRUE,
scale = TRUE
)
summary(cv_dat, mtcars)
#> $cvRiskByClass
#> # A tibble: 3 × 7
#> Estimator Min Q1 Median Q3 Max Mean
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 sampleCovEst 184229575. 184229575. 184229575. 184229575. 184229575. 1.84e8
#> 2 thresholdingEst 184229575. 184229575. 184229577. 184229584. 184229584. 1.84e8
#> 3 linearShrinkEst 198978118. 220774488. 285510709. 435473742. 570688231. 3.52e8
#>
#> $bestInClass
#> # A tibble: 3 × 6
#> estimator hyperparameter cv_risk cond_num sign sparsity
#> <chr> <chr> <dbl> <dbl> <chr> <dbl>
#> 1 sampleCovEst hyperparameters = NA 184229575. 473000 PD 0
#> 2 thresholdingEst gamma = 0.1 184229575. -1400000 IND 0.083
#> 3 linearShrinkEst alpha = 0.9 198978118. 124000 PD 0
#>
#> $worstInClass
#> # A tibble: 3 × 6
#> estimator hyperparameter cv_risk cond_num sign sparsity
#> <chr> <chr> <dbl> <dbl> <chr> <dbl>
#> 1 sampleCovEst hyperparameters = NA 184229575. 473000 PD 0
#> 2 thresholdingEst gamma = 0.8 184229584. -11400 IND 0.43
#> 3 linearShrinkEst alpha = 0.1 570688231. 2060 PD 0
#>
#> $hyperRisk
#> $hyperRisk$thresholdingEst
#> # A tibble: 5 × 3
#> hyperparameters cv_risk stat
#> <chr> <chr> <chr>
#> 1 gamma = 0.1 184229575 min
#> 2 gamma = 0.1 184229575 Q1
#> 3 gamma = 0.3 184229577 median
#> 4 gamma = 0.7 184229584 Q3
#> 5 gamma = 0.7 184229584 max
#>
#> $hyperRisk$linearShrinkEst
#> # A tibble: 5 × 3
#> hyperparameters cv_risk stat
#> <chr> <chr> <chr>
#> 1 alpha = 0.9 198978118 min
#> 2 alpha = 0.8 220774488 Q1
#> 3 alpha = 0.6 285510709 median
#> 4 alpha = 0.3 435473742 Q3
#> 5 alpha = 0.1 570688231 max
#>
#>